
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 3, 213-216 (1983) 

GENERATING EXACT SOLUTIONS OF THE 
TWO-DIMENSIONAL BURGERS’ EQUATIONS 

CLIVE A. J .  FLETCHER 

Department of Mechanical Engineering, University of Sydney, Sydney, N.S. W. 2006 Australia 

KEY WORDS Burgers’ Equations Exact Solution Fluid Flow 

Burgers’ equation is well suited to modelling fluid flows as it incorporates directly the 
interaction between the non-linear convection processes and the diffusive viscous processes. 
In one dimension the Cole-Hopf procedure transforms Burgers’ equation into the linear heat 
conduction equation. As a result many exact solutions of Burgers’ equation are available in 
the literature. Thus Burgers’ equation has often been used as a model equation for 
comparing the accuracy of different computational algorithms. This aspect of Burgers’ 
equation is reviewed by Fletcher.’ 

The two-dimensional Burgers’ equations 

(1) 
S 

u, + uu, + vu, -- (uxx + u y y )  = 0 
R e  

z ) t + u v x + v v y - - ( ~ , , + ~ y y ~ = o  1 
Re 

are the same as the incompressible Navier-Stokes equations with the pressure gradient terms 
removed. Clearly, solutions to equations (1) and (2) would not, necessarily, satisfy the 
continuity equation. However, the two-dimensional Burgers’ equations constitute an approp- 
riate model for developing computational algorithms, for solving the incompressible Navier- 
Stokes equations. Numerical solutions of equations (1) and (2) have been ~ b t a i n e d ~ , ~  but the 
accuracy of the results were assessed indirectly via grid refinement as no exact solutions were 
available to the authors. 

Here a procedure is developed for generating exact solutions of the two-dimensional 
Burgers’ equations. It has been pointed out by Cole4 and Ames5 that the Cole-Hopf 
transformation can be interpreted as a multi-dimensional transformation. In two dimensions 
the Cole-Hopf transformation relates a function, 4, to u and v in the following way. 

and 

Then equations (1) and (2) become 
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For simplicity attention will be focussed on the steady counterparts of equations (l), (2) 
and (5) i.e. 

#xx + #yy = 0. ( 6 )  
In one dimension the equation (which is closely related to Burgers’ equation), 

(7) 
1 

( u - 0 - 5 ) u x - -  u,, = O ,  
Re 

has the solution 
u = 0.5 - 0.5 tanh (0-25 Re x). 

The solution (8) represents a shock wave centred at x = 0 and the shock wave can be made 
sharper (larger gradient, u,.) by increasing Re. The structure of tanh (kx) and the form of 
equation (3) suggest that a suitable contribution to cf, might be 

A #  = (exp (kx)+exp (-kx)) cos (ky), (9) 
which satisfies equation (6). 

following, 
To provide more control over the ‘velocity’ distributions, equation (9) is generalized to the 

# = a,+a,x+a,y+a,xy+{exp (k(x-x,))+exp (-k(x-x,))}cos ( k y ) .  (10) 
It can be verified by substitution that equation (10) satisfies equation (6). Using equations (3) 
and (4) the following expressions for u and v are obtained, 

(11) 

* (12) 

-2 {a,+a,y+ k[exp (k(x-xo))-exp(-k(x-x,))]cos ky} 
Re {a, + a, x + a2 y + a,xy + [exp (k (x - xo)) + exp (- k(x - x,))] cos ky} 

u=- 

and 
-2 
Re {a,+ a ,x  + a,y + a,xy +[exp (k(x - xo))+ exp (-k(x - x,))] cos ky}. 

{u,+a,x- k[exp (k(x-x,))+exp (-k(x-x,))]sin ky} v=- 

If a. = a, = a2 = a3 = 0 and x - x, >> 0, equations (1 1) and (12) become 

u = -2 k/R,, 

u = 2 k/R,, 

0 = (2 k tan ky)/R,. 

v = (2 k tan ky)/R,. 

(13) 

(14) 

If a, = a, = a2 = a3 = 0 and x -xg<< 0, equations (11) and (12) become 

A typical evaluation of equations (11) and (12) for the domain -1 s x s  1, 0 s  y s ymax is 

Table I. Exact solution for u of two-dimensional Burgers’ equation 

y/y,,, x =-1.0 -0.6 

1.0 0.9988 0.9748 
0-8 0.9989 0.9761 
0.6 0.9989 0.9770 
0.4 0.9990 0.9777 
0.2 0.9990 0.9780 
0 0.9990 0.9782 

- 0.2 

0.7483 
0.7588 
0.7666 
0-7718 
0.7749 
0.7759 

0.2 

0.1407 
0.1529 
0-1623 
0.1690 
0.1730 
0.1743 

0.6 

- 0.0862 
-0.0841 
- 0.0825 
-0.0813 
- 0.0806 
- 0.0804 

1.0 

- 0.0992 
- 0.0992 
- 0.0991 
-0.0991 
- 0.0991 
- 0.0991 
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Table 11. Exact solution for ti of two-dimensional Burgers’ 
equation 

y/ymaX ~ = - 1 . 0  -0.6 -0.2 0.2 0.6 1.0 

1.0 0.5774 05677 0.4611 0.1522 0-0206 0.0045 
0.8 0.4452 0.4381 0.3593 0.1220 0-0167 0.0037 
0.6 0.3249 0-3199 0.2642 0.0917 0.0127 0.0028 
0.4 0.2126 0-2094 0.1738 0.0612 0.0085 0.0019 
0.2 0.1051 0.1036 0.0862 0.0306 0.0043 0.0009 
0 0.0 0.0 0.0 0.0 0.0 0.0 

shown in Tables I and 11. The following parameter values were chosen 

k=0 .5 ,  R,=5, x o = l ,  uo=u,=O.OO1 kexp(( l+xo)k)  

Yrnax = d 6 k )  a, = u3 = 0. (15) 

The solution shown in Table I is qualitatively similar to the one-dimensional ‘shock’ solution 
of Burgers’ equation. 

To illustrate the usefulness of equations (11) and (12), we have obtained steady-state 
solutions of equations (1) and (2) with a centred second-order finite difference formulation 
and a finite element formulation based on linear rectangular elements. The exact solutions, 
(11) and (12), supply both the boundary conditions for u and v and the final solution to test 
the relative accuracy of the finite difference and finite element methods. The steady-state 
solutions were obtained by the implicit integration of a time-split pseudotransient interpreta- 
tion6 of equations (1) and (2). 

For various mesh sizes the rms errors in the finite difference and finite element solutions 
for u and 2) are shown in Table 111. 

Both methods converge like O(A2x, A”y) approximately. The finite element formulation 
generates more accurate solutions for u particularly with a refined grid. The solution 
accuracy for v is comparable for the two formulations. The execution times per time step are 
appropriate to a CYBER-172. Both formulations produce execution times that are approxi- 
mately linear in the number of grid points, as expected. However, the conventional finite 
element formulation is considerably less economical. This lack of economy can be traced to 
the relatively inefficient treatment of the convective terms, uu,, vu,, etc. 

Table 111. Comparison of finite difference (F.D.) and finite element (F.E.) solutions of equations 
(1) and (2) 

Execution time 
Number of per time step 

grids Ax u velocity, rms error ti velocity, rms error (secs) 
points Aylyman F.D. F.E. F.D. F.E. F.D. F.E. 

6 x 6  0-4 0.130 x lo-* 0.742 X 0.323 x 0.443 x 0.0075 0.031 

11 x 11 0.2 0 . 4 0 6 ~  0 . 1 6 9 ~  0 . 9 6 0 ~  0 - 9 8 0 ~  0.031 0.148 

21 x 21 0.1 0.108 x 0.319X 0.266 x 0.247 x 0-131 0.662 

41 x 41 0.05 0,253 x 0-274X lo-’ 0.598 X 0578  X lo-’ 0.519 2.825 

0.2 

0.1 

0.05 

0.025 
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In this paper an economical procedure for generating exact solutions of the two- 
dimensional Burgers’ equations has been described. It is expected that this will facilitate the 
use of the two-dimensional Burger’s equations to test computational algorithms for solving 
the incompressible Navier-Stokes equations. 
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